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Abstract
Introduction: Mass gatherings are common in Australia. The interplay of variables,
including crowd density and behavior, weather, and the consumption of alcohol and other
drugs, can pose a unique set of challenges to attendees’ well-being. On-site health services
are available at most mass gatherings and reduce the strain on community health facilities.
In order to efficiently plan and manage these services, it is important to be able to predict
the number and type of presenting problems at mass gatherings.
Problem: There is a lack of reliable tools to predict patient presentations at mass gather-
ings. While a number of factors have been identified as having an influence on attendees’
health, the exact contribution of these variables to patient load is poorly understood. Fur-
thermore, predicting patient load at mass gatherings is an inherently nonlinear problem,
due to the nonlinear relationships previously observed between patient presentations and
many event characteristics.
Methods: Data were collected at 216 Australian mass gatherings and included event type,
crowd demographics, and weather. Nonlinear models were constructed using regression
trees. The full data set was used to construct each model and the model was then used to
predict the response variable for each event. Nine-fold cross validation was used to estimate
the error that may be expected when applying the model in practice.
Results: The mean training errors for total patient presentations were very high; however,
the distribution of errors per event was highly skewed, with small errors for the majority of
events and a few large errors for a small number of events with a high number of pre-
sentations. The error was five or less for 40% of events and 15 or less for 85% of events. The
median error was 6.9 presentations per event.
Conclusion: This study built on previous research by undertaking nonlinear modeling,
which provides a more realistic representation of the interactions between event variables.
The developed models were less useful for predicting patient presentation numbers for very
large events; however, they were generally useful for more typical, smaller scale community
events. Further research is required to confirm this conclusion and develop models suitable
for very large international events.
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Introduction
Mass gatherings occur frequently in Australia and present a unique set of challenges with
respect to attendees’ health and well-being, and the provision of timely and appropriate
health care. The potential for illness and injury at these events is higher than in the general
community, as a result of the interplay of a range of factors, including crowd density and
behavior, weather, and the consumption of alcohol and other drugs.1 On-site medical care
is provided at most mass gatherings, with the aim of delivering timely health interventions
and preventing undue strain on the local community’s health services.2 In order to
appropriately plan and manage on-site health care services, it is important to be able to
accurately predict health care needs at each event, including patient volume and types of
presenting problems. However, resourcing of on-site health care facilities is predominantly
based on previous experiences and anecdotal evidence,3 rather than empirical and analytical
approaches.
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The lack of reliable tools to predict patient presentation rates
(PPRs) at mass-gathering events was first identified by Hnatow
and Gordon,4 who noted that environmental features of events
appeared to be significant, albeit poorly understood, contributors
to patient load. Similarly, De Lorenzo5 and Michael and Barbera6

discussed the wide variation in the number and type of patient
presentations at similar mass-gathering events, arguing that a
range of event and crowd factors were important contributors to
the observed differences. An extensive review of the literature by
Milsten, et al7 in 2002 concluded that multiple inter-related
variables influence the number and type of patient presentations at
mass gatherings and contribute to an element of uncertainty when
planning and resourcing on-site health care facilities.

The influence of event variables, including crowd size, tem-
perature, humidity, and venue type, on patient load at Australian
mass gatherings was first estimated by Arbon, et al8 using linear
regression modeling. Another model used five key variables to
predict patient presentations at mass gatherings in the US; how-
ever, the simplicity of the model hindered its utility and applic-
ability to events other than the 55 events at a US college football
competition that the model was based on.9 Similarly, a model that
predicted injuries based on weather conditions at mass gatherings
was too simplistic, as it failed to account for previously identified
important event variables, such as crowd characteristics.10

Predicting patient load at mass gatherings is an inherently
nonlinear problem. This is illustrated by the nonlinear relationship
between patient presentations and many event characteristics. For
example, there is a positive correlation between temperature and
PPR until the temperature reaches a certain point, after which the
PPR begins to reduce, possibly due to extra precautions taken by
event attendees.8

This study aims to build on earlier research by undertaking
nonlinear modeling of mass-gathering variables to understand the
utility of this approach for prediction of the number of patient
presentations at events.

Methods
Data Collection
Data were utilized from two sources: a large, pre-existing and de-
identified research data set and additional event data collected as a
component of a current study. The research findings using the first
data set have been reported previously.8

The current project considers event characteristics and patient
presentation data at 15 mass-gathering events in South Australia
over the 2015-2016 summer and autumn seasons. Data were
collected at events that met the following inclusion criteria:
expected number of attendees> 5,000; outdoor setting; and
fenced or naturally bounded by roads or natural barriers. Selected
events included sporting matches, outdoor concerts, and
agricultural shows.

In the current study, variables of interest included weather data,
including temperature, humidity, wind speed, and brightness that
were captured by freestanding, electronic weather stations (n= 2)
deployed at each event. The weather stations were positioned at
locations evenly spread throughout each venue to capture any
weather fluctuations in different areas of each event. The weather
stations automatically recorded weather data at 30-second inter-
vals, allowing changes in weather to be monitored over time.

Using standard questionnaires, event and venue characteristics
were recorded at the start of each event, while crowd characteristics
were documented once per hour by trained fieldworkers (n= 2).

The fieldworkers completed the crowd characteristics ques-
tionnaires while standing in close proximity to their assigned
weather station, to capture the conditions at each location. The
information recorded on the event and venue questionnaire
included event type, location, and duration; availability of alcohol;
and presence of security and emergency personnel. The crowd
characteristics questionnaire recorded items such as demographics,
crowd size, mobility, density, and behavior.

De-identified patient presentation records were obtained
directly from the on-site health service provider at the conclusion
of each event. Information contained in the records included sex,
year of birth, presenting problem, treatment and medication pro-
vided, and final disposition. The broader findings of this current
study concerning the interactions between environmental aspects
and event health services will be reported elsewhere.

For the purposes of testing the utility of nonlinear approaches
to prediction of presentations for health care at mass gatherings,
data for the 15 South Australian mass gatherings (current study)
were combined with data from 201 Australia-wide mass gather-
ings from the previous study8 in order to increase the overall
sample size and enable meaningful analysis. As a result of com-
bining the two data sets, not all collected data could be used. Some
variables were recorded for one of the two datasets, but not both.
For some variables, the amount of missing data was too large,
while some recorded information was essentially the same for all
events and therefore did not have any discriminatory power. The
patient presentation types (variables) were adopted from the larger
study.8

Model Construction
To construct a meaningful nonlinear model, the number of
occurrences of each variable must be sufficiently large. Separate
models were constructed for response variables for which the total
number of occurrences was 200 or greater. This resulted in models
for six response variables: the total number of patient presentations
(TPP); the total number of patients transported (TPT); the
number of presentations related to asthma (AST); the number of
lacerations (LAC); the number of patients presenting with minor
injury or illness (MIN); and the number of patients presenting
with other illness or injury not within the categories of any of the
original 24 response variables (OTH). Thus, this last category
does not include presentations related to cardiac problems,
asthma, heat-related presentations, lacerations, fractures, alcohol-
or drug-related presentations, or minor injuries or illnesses. In
addition, the model was run using the PPR as the response
variable.

For each of the six eligible response variables, a separate
regression tree was constructed. Regression trees fall within the
domain of classification and regression trees (CART) and form a
general framework for constructing nonlinear models.11,12 Briefly,
the method works by testing a range of threshold values for each
input attribute. For each threshold and for each input attribute,
two regressions are computed on the response variable, one for the
data with values above the threshold and one for the data with
values below the threshold. Thus, there are two regression models,
each applying to one portion of the data only. The best regression
fit obtained over all thresholds and over all input attributes is
adopted as the first split. The data are divided into two groups
according to this split. The steps above are repeated for each of
these two data sets resulting in four data sets and four associated
regression models, and so on, until a pre-set limit for the number
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of splits is attained or the amount of data per data set becomes too
small to sensibly divide further. In the jargon of CART, each split
represents a branch point and the final subsets into which the data
are divided are called leaves (of the tree). All computations were
performed using the scientific programming platform Matlab
(The MathWorks, Inc.; Natick, Massachusetts USA).

A number of preliminary runs were used to determine that
running CART with 12 splits (thus 24 branches) provided rea-
sonable fits and that increasing the number of branches did not
provide significantly better fits. Thus, all models were constructed
using 12 splits.

Input Attributes
Not all input attributes recorded in the data were used to construct
the models. Input attributes were rejected if: (1) the attribute was
not recorded for both data sets; (2) information was incomplete or
missing; and/or (3) the values were very consistent over all events
(thus having no discriminatory power). This left an initial list of 16
input attributes for construction of models (Table 1).

Primary and Secondary Input Attributes
Primary input attributes are those that may be estimated prior to
an event without reference to other input attributes. Weather
conditions and attendance, for example, are never known exactly
prior to an event, but may be estimated with some confidence. The
age distribution of the crowd is highly dependent on the type of
event. Thus, while the age distribution is likely to influence the

number of presentations and types of services required, this input
attribute must be estimated from other attributes such as event
type and timing (the timing of an event is usually established with
the anticipated age distribution in mind). The age distribution is
viewed as a secondary attribute as estimates depend on estimates of
primary attributes. In this study, the five age attributes and the
heat index were viewed as secondary input attributes and the
remaining 10 were viewed as primary input attributes.

Models for TPP and TPT were constructed using all 16 input
attributes. Separate models were also constructed for TPP and
PPR and all other output variables using just the 10 primary input
attributes.

Performance Measures
The full data set was used to construct each model. The model was
then used to predict the response variable for each event in the
data. The true values of the response variable were compared to
values predicted by the model to arrive at an error for each event.
This is called the training error since the same data were used to
measure the error as were used to construct the models. Next,
nine-fold cross validation12 was used to estimate the error that may
be expected when applying the model in practice. To do this, the
data were randomly separated into nine folds of 24 events each.
Eight of the folds (192 events) were used to train a new model and
this model was used to predict the response variable for the
remaining fold (24 events). This was repeated nine times, each
time retaining a different fold to predict the response variable. The
mean errors of the predicted responses were recorded as the
prediction error.

Ethics approval was obtained from the Social and Behavioural
Research Ethics Committee of Flinders University (Adelaide,
Australia) and the Human Research Ethics Committee of St John
Ambulance Australia (Canberra, Australia).

Results
The mean training errors for TPP were very high (50.4 pre-
sentations per event; n= 216), but the distribution of errors per
event was highly skewed with small errors for the great majority of
events and a few large errors for some events with many pre-
sentations (Figure 1). More specifically, the error for TPP was five
or less for 40% of the events and 15 or less for 85% of the events.
The median error was 6.9 presentations per event. Highly skewed
distributions of errors were observed for both training and testing
errors for all models. Mean errors are useful for comparing models,
but median errors provide better indications of typical
performance.

TPP Compared to PPR
Patient presentation rates for individual events produced by the
model for PPR were multiplied by the attendance for each event to
arrive at estimates of the total number of presentations. The mean
error per event from the PPRmodel (60.6) was approximately 20%
greater than the mean error from the TPP model (50.4).

Contribution of Secondary Attributes
There was very little difference between the errors for models
based on all 16 input attributes and models based on just the 10
primary attributes (Table 2).

No. Name Type

1 Event Type Cat

2 Mob/Seat Cat

3 Bounded Cat

4 Focused Cat

5 Day/Night Cat

6 Attendance Num

7 Temperature Num

8 Humidity Num

9 Heat Index Num

10 Alcohol Cat

11 Age 0-20 Num

12 Age 20-40 Num

13 Age 40-60 Num

14 Age 60-80 Num

15 Age 80 + Num

16 Indoor/Out Cat
Arbon © 2018 Prehospital and Disaster Medicine

Table 1. Model Input Attributes
Note: The last column indicates if the attribute is categorical or
numerical.
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Performance of the Models
Training and prediction errors for TTP and TPT appear in
Table 2. Errors for the remaining models appear in Table 3.

Importance of Input Attributes
During model construction, each split in the tree is based on the
input attribute that best separates the data for the construction of
two linear sub-models (Figure 2). The more often a particular
input attribute is used as the basis for a split, the greater its role in
the ultimate predictions made by the model. The number of times
each input attribute was the basis of a split for each model appears
in Table 4.

Discussion
TPP and PPR
The model for predicting TPP outperformed the model for pre-
dicting PPR. This is not a surprise since the models constructed
here are nonlinear. If PPR is predicted in a nonlinear way, then
multiplying the resulting presentation rates by the attendance (a
linear operation) to obtain the total number of presentations is
more restrictive than incorporating the total attendance as part of
the nonlinear model. The situation would be mitigated if the
attendance was highly correlated to the number of presentations,
but this was not the case. Over the 216 events comprising the data
set, the coefficient of correlation between attendance and the
number of presentations was r= 0.22. This indicates that, even if
linear models are used to predict medical services for events, the
models should aim to predict the total number of presentations
instead of presentation rates.

Primary and Secondary Input Attributes
There is no absolute criterion for assigning input attributes as
primary or secondary. In practice, nearly all reasonable input
attributes may be viewed as secondary. Forecasts for temperature
may well influence attendance, and event type certainly influences
attendance. The question is really if a particular input attribute will
contribute significant new information relative to predicting the
output variable. In this study, the distribution of the age of the
crowd and the heat index were judged to contribute little inde-
pendent information. The heat index, for example, depends in a

nonlinear way on temperature and humidity, both of which were
included as primary attributes.

The drawback of including many input attributes in a model is
that doing so will require the end user of the model to have this
information available. Requiring that the age distribution or the
heat index for an event be known far enough ahead of time to
adjust the planning of services would limit the practicality of the
model. Accordingly, models should strive for a balance between
the number and availability of input attributes and accuracy.

Here there was no appreciable loss of accuracy when models for
TPP and PPR were constructed without the secondary attributes
of age distribution and heat index (Table 2).

Overall Accuracy
Table 3 indicates that for most events, all the output variables were
predicted accurately. However, very large errors were encountered
for some events. This was especially true for predicting the total
presentations for very large events. In part, this is due to the fact
that very few extremely large events were included in the data and
so there were too few examples to allow the models to capture
patterns for these events. In addition, the variation in the total
number of presentations is bound to increase with the size of
events. Many additional examples would be required to adapt
these models for very large events.

Importance of Input Attributes
The attendance was responsible for more splits overall and for
more splits in nearly every single model (Table 4). As noted earlier,
the coefficient of correlation between attendance and patient
presentation is low, but this only indicates that linear correlation is
low and does not preclude attendance playing a major role in
predicting presentations.

Next, the type of event and the temperature were the basis for
many splits, with humidity not far behind. Interestingly, tem-
perature and humidity played a larger role than either the type of
event or the attendance for predicting the total number of patients
transported but played no role in modeling the number of
unspecified presentations (OTH).

Alcohol did not contribute to any splits in constructing the
models. This may seem surprising, but care must be taken in
interpreting this result. Alcohol may well have been responsible for a
considerable number of presentations, but if the proportion of
alcohol-related presentations is consistent, for example, then alcohol
will not contribute to many splits in the modeling process. These
results indicate that perhaps alcohol should be viewed as a secondary
input attribute, probably dependent on event type and attendance.
In addition, alcohol was only recorded as present (officially) or not.
Alcohol was present at 199 out of 216 events (92%). Due to the
possible discrepancy between the official and actual presence of
alcohol, the actual proportion may be higher. With so few alcohol-
free events, the models are unable to capture trends for this category.
A similar phenomenon may explain that whether an event was
focused (88%) or extended did not determine any splits.

The structures of the models depended nearly entirely on five
input attributes: the attendance, the type of event, the tempera-
ture, the humidity, and the timing of the event (day, night, or
both). Thus, although predicting the number of patient pre-
sentations, patient transports, and the types of presentations is
inherently complex, nonlinear models have been developed that
depend on only a few input attributes, each of which may be

Arbon © 2018 Prehospital and Disaster Medicine

Figure 1. The Percent of Events with Training Error of a
Given Size.
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known, or well estimated, ahead of time to allow planning of
medical services at events.

Limitations
It is acknowledged that there is a significant period between the
collection of data for the two studies. However, the focus of this

paper is assessment of the utility of nonlinear mathematical
modeling for planning and to consider any novel findings that
emerge from this evaluation and may inform future research. As
such, access to a large set of raw data that could be included in the
models was the primary concern.

The models (Appendices A - G; available online only) apply to
mass gatherings with characteristics that fall within the range of
the data set used to generate the models. In particular, all data were
collected at events in Australia. In addition, not all combinations
of input attribute values appear in the data. The models do provide
estimates for combinations not seen in the training data. For
example, the split at Splitting Node 9 in the model for TPP is
based on the type of event, but not all event types were represented
in the training data that arrived at Node 9 in the tree (Appendices
A and B; available online only). In such a situation, the value of the
output variable (TPP in this case) is the mean of the output values
of the events reaching this node. Naturally, these estimates will
improve if more diverse events are used to train the models.

Conclusion
This study built on earlier research by undertaking nonlinear
modeling of mass-gathering variables to understand the utility of
this approach for prediction of the number of patient presentations
and transport to hospital demand at events.

Nonlinear modeling provides a more realistic representation,
compared to linear modeling, of the interactions within and between
important event variables. Consequently, it is appropriate to focus on
TPP as the principal outcome measure rather than PPR as rates are

Training Training Prediction Prediction

Mean Median Mean Median

TTPAll 16 Attributes 50.4 6.9 52.1 16

TTP 10 Primary Attributes 54.0 7.2 52.2 16

TPTAll 16 Attributes 1.6 0.5 1.6 1

TPT 10 Primary Attributes 3.4 0.4 1.5 1
Arbon © 2018 Prehospital and Disaster Medicine

Table 2. Training and PredictionMean Error per Event andMedian Error for the Number of TPP and the TPT forModels Based
on All 16 Input Attributes and for Models Based Only on the 10 Primary Input Attributes
Abbreviations: TPP, total number of patient presentations; TPT, total number of patients transported.

Training Training Prediction Prediction

Mean Median Mean Median %<3

AST 1.5 0.3 1.6 1 88.3

LAC 4.4 0.7 3.4 1 92.4

MIN 63.9 6.9 42.1 12 39.0

OTH 4.2 1.1 3.3 1 83.1
Arbon © 2018 Prehospital and Disaster Medicine

Table 3. Training and Prediction Mean Error per Event and Median Error for the Number of Patients Presenting with AST,
LAC, MIN, and OTH
Note: The last column lists the percentage of events with error less than or equal to three.
Abbreviations: AST, asthma-related problems; LAC, lacerations; MIN, minor injuries or illness; OTH, other problems.

Arbon © 2018 Prehospital and Disaster Medicine

Figure 2. Tree Structure of the Model for TPP.
Note: There are 25 nodes:12 splitting nodes (nodes 1, 2, 3, 4,
7, 8, 9, 10, 11, 13, 15, 18) and 13 leaves. The input attribute
on which the split is based is given for each splitting node.
Abbreviation: TPP, total number of patient presentations.
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not closely linked to total attendance in this data set. Additionally, it
can be concluded that TPP has greater utility as an outcome variable
than PPR, even when linear models are used for planning.

The 10 primary attributes provide sufficient data and a more
simplistic and easily used approach to estimating TPP. Secondary
attributes are linked to primary attributes and could be considered
redundant or at least unnecessary.

Models developed in this project were less useful in predicting
TPP for a few very large events but generally were useful for
“typical” community events. Further data are required to confirm
this conclusion and to develop models suitable for very large
international events.

Attendance and type of event were important variables in
determining total presentations, followed by temperature and
humidity. Interestingly, temperature and humidity were the most
important determinants of TPT and could be a greater driver in
ambulance planning.

The role of alcohol was unclear and further research is required,
especially focusing on the collection of accurate data on avail-
ability, the effect of “loading” prior to the event, and consumption.

The development of nonlinear models that are dependent on
few inputs, in this case attendance, the type of event, the

temperature, the humidity, and the timing of the event (day, night,
or both), is important because the utility and practical use of the
models for planning is improved when less information is required
to support the prediction.

Large data sets across international events have the potential to
provide effective models capable of better supporting planning –
especially for novel events where the community has less historical
data to support preparations. Improved consensus on minimum
data sets and data definitions will be required to support this effort.

The models in Appendices B - G (available online only) may be
used with confidence to estimate emergency service requirements
for Australian events of the types included in the data. For event
types not covered in this study, or for similar events in different
cultural or climatic contexts, the specific models presented here
may not apply well. However, as a general method, this study
demonstrates that regression trees provide a simple way to con-
struct nonlinear models for mass gatherings that are easy to
implement and interpret.

Supplementary Materials
To view supplementary material for this article, please visit https://
doi.org/10.1017/S1049023X18000493
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